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Abstract
Interactive search, where a set of tags is recom-
mended to users together with search results at each
turn, is an effective way to guide users to iden-
tify their information need. It is a classical se-
quential decision problem and the reinforcement
learning based agent can be introduced as a so-
lution. The training of the agent can be divided
into two stages, i.e., offline and online. Existing
reinforcement learning based systems tend to per-
form the offline training in a supervised way based
on historical labeled data while the online train-
ing is performed via reinforcement learning algo-
rithms based on interactions with real users. The
mis-match between online and offline training leads
to a cold-start problem for the online usage of the
agent. To address this issue, we propose to employ
a simulator to mimic the environment for the offline
training of the agent. Users’ profiles are considered
to build a personalized simulator, besides, model-
based approach is used to train the simulator and is
able to use the data efficiently. Experimental results
based on real-world dataset demonstrate the effec-
tiveness of our agent and personalized simulator.

1 Introduction
Online shopping platforms, such as Amazon, Taobao, and
eBay, have dramatically changed people’s living style. The
volume of products on these platforms has grown tremen-
dously in recent years, which escalate the need for personal-
ized products recommendation. Extensive machine learning
algorithms have been studied [Li et al., 2011; Clark, 2015;
Yin et al., 2016; Liu et al., 2017] for automatic product
retrieval and recommendation. However, existing research
tends to treat the problem as a static one without modeling
interactions with users. The shopping process in complicated
because users might not be certain with their need in the be-
ginning, therefore, a single-step solution might not be enough
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Figure 1: An illustration for interactive search.

to meet users’ requirement. In order to improve the shopping
experience and help users identify their need quickly, interac-
tive search is emerging. An illustration of interactive search
can be seen in Figure 1. At each turn, the system presents a
set of tags related to the product together with search results
based on user queries. A user can either type new keywords
or click any tag provided to update the request. Based on
users’ feedback, a new set of ranked products and tags would
be returned.

It usually involves several steps for users to identify their
need. Therefore, interactive search can be naturally for-
mulated as a sequential decision problem. Recently, re-
searchers have explored to utilize Reinforcement Learning
(RL) based agent for product recommendation and informa-
tion retrieval [Taghipour and Kardan, 2008; Zhao et al., 2018;
Zheng et al., 2018; Choi et al., 2018]. The training of these
models can be divided into two stages, namely, online and
offline. Existing research usually trains the model in a super-
vised fashion offline based on historical data while the online
learning is performed by interacting with real users via RL al-
gorithms. Though promising results have been reported, the



optimization objectives of offline training and online learn-
ing are different, which leads to a cold-start problem for the
online usage of the agent. In order to address this issue, we
propose to design a simulator to interact with the agent for its
offline training.

Designing an environment simulator for online shopping
platform is challenging for two reasons. First, different users
have different preferences. Second, the labeled data for the
offline training is usually limited. How to train the agent effi-
ciently becomes a problem. In order to tackle these two chal-
lenges, we introduce a personalized, model-based environ-
ment simulator, which takes the users’ profiles into consider-
ation when mimicking the behavior of real users. In summary,
our contribution is three-fold:

• We propose to employ an environment simulator for the
offline training of the agent in interactive search.

• We propose a multi-task learning approach to model per-
sonalized user preferences based on real user profiles.
Besides, we utilize a model-based RL algorithm to make
full use of limited labeled data.

• Experimental results on a real-world dataset show the
effectiveness of our simulator. By estimating the state
transition probability, the collected dataset can be used
efficiently via our simulator and the agent converges
faster.

2 Task Formulation
2.1 Task
In interactive search (Figure 1), a search session is initialized
by a user with his/her first query. At each turn t, the agent re-
turns a set of ranked products (lower part) based on query
qt. Meanwhile, the agent receives a set of candidate tags
Tt = {t1, · · · , tnt

t
}1, where ntt is the number of candidate

tags at turn t, and a subset ofK (whereK ≤ |Tt|) ranked tags
(middle part) are recommended to help user search desired
products. If the displayed products cannot meet the user’s de-
mand , the user can either click on one of the displayed tags
or type keywords to update his/her query for a better search
result. Here are some notations used in this paper:

• User u. To model different preferences of users, each
user is represented as a vector u ∈ U with three features,
i.e., the age, gender and purchase power.

• Query q. Each query is represented as a sequence of
words q = (w1, · · · , wnq ) ∈ Q, where wi is the i-th
word in q and nq is the number of words in q.

• Tag t. Each tag t = (w1, · · · , wnt) is also a sequence
of words, where nt is the number of words in tag t.

2.2 MDP Formulation
We cast this problem as a Markov Decision Process (MDP)
from the agent’s perspective. An MDP consists of a tuple of
five elements (S,A,R,P, γ) which are defined as follows:

1In this work, candidate tags are derived from logs via informa-
tion retrieval based methods, and tag generation is not concerned.
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Figure 2: Our multi-task model-based simulator, including three
sub-tasks of clicking (binary classification), terminating (binary
classification) and transition (multi-classes classification).

State space S. A state st = (u, qt) ∈ S , where u ∈ U
is the user who initialized this session and qt is the query at
turn t. After the user clicks on a tag or types several new key-
words, the state will be updated to st+1 = (u, qt+1), where
the qt+1 is updated by appending the new keywords or the
words of the clicked tag to qt.

Action spaceA. At turn t, an action at = (t1t , · · · , tKt ) ∈
A(st) is a sequence of K tags displayed to the user at turn
t. Given a set of candidate tags Tt at turn t, the action space
A(st) is the set of all permutations of K tags chosen from Tt.

RewardR. After the agent takes an action at given a state
st, i.e., displaying a sequence of tags to the user, the user can
click one of the tags or type in several keywords. The agent
will receive an immediate reward rt = R(st, at) according
to the feedback of the user u.

Transition probability P . p(st+1|st, at) is the probability
of state transition from st to st+1 after the agent takes an
action at at state st.

Discount factor γ. γ ∈ [0, 1] defines the discount factor
when we measure the present value of future reward.

In RL, the policy π describes the behavior of an agent,
which takes the state st as input and outputs the probability
distribution over all possible actions π(at|st), ∀at ∈ A(st).
The agent can be trained via RL-based algorithms, where its
goal is to find an optimal policy π which maximizes the dis-
counted cumulative reward.

3 Environment Simulator
In our task, there are three tasks that the environment needs to
consider at each turn, i.e., returning a feedback to the agent,
terminating or continuing the current session and transiting to
a new state. Our simulator is thus designed as Figure 2 that
combines three sub-tasks: (1) Clicking. This sub-task pre-
dicts whether one of displayed tags will be clicked by the real
user or not. According to the predicted result, the immediate
reward will be returned to the agent. (2) Terminating. This
sub-task decides to terminate or continue this current search
session. (3) Transition. At each turn, the state will transit to
a new state and this sub-task models the transitions between
states. As shown in Figure 2, the lower layers are shared
across all three tasks, while the top layers are task-specific.

Shared Layer. At each turn, the simulator takes the state
s = (u, q) and last agent action a = (t1, · · · , tK) ∈ A(s) as
input. Considering that the query q and all tags are a sequence
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Figure 3: State transition with abstract query.

of words respectively, we first use a bidirectional LSTM to
encode the query and tags. Then, the order information be-
tween tags in action a is also important, so another bidirec-
tional LSTM is employed to extract the order information be-
tween tags. The user u, query q and action a are encoded as
hs,u, hs,q and hs,a via a shared layer of our simulator.

Task-specific Layer. The task-specific layer of each sub-
task is a two fully connected layers with LeakyReLU as ac-
tivation function. It takes hs,s = [hs,u, hs,q, hs,a] as input
and outputs the result of corresponding sub-task. Considering
that all the three sub-tasks are classification problems, we use
cross entropy as the loss function for all the three sub-tasks.
Now, we can write the total loss function of our simulator as:

Ls(θs) = Ls
click(θ

s) + Ls
trmt(θ

s) + Ls
trt(θ

s) (1)

where Ls
click(θ

s), Ls
trmt(θ

s) and Ls
trt(θ

s) are the losses of
clicking, terminating and transition sub-tasks respectively.

Transition Probability Approximation. In order to use
the collected data efficiently, we approximate the transition
probability matrix of states. Inspired by Serban et al. [2018],
rather than estimating the full transition probability p(s′|s, a)
directly, we approximate it with:

p(s′|s, a) = p(u, q′|u, q, a) = pu(q′|q, a)

≈
∑
z′∈Z

puabs(z
′|q, a)puabs(q′|z′) (2)

where u is the user that interacts with the agent in current ses-
sion, andZ is a discrete abstract query space which meets the
condition of |Z| � |Q|. In other word, we estimate a user-
specific transition probability matrix for each user u. In this
way, the size of original transition probability matrix |A||S|2,
where |S| = |U||Q|, will be reduced to |A||U||Q|2. Further
more, by introducing the abstract query space Z , it will be
further reduced to |U|(|A||Q||Z|+ |Q||Z|). After the above
two steps, the sample complexity for accurately estimating
the transition probability will be reduced greatly.

The transition is illustrated in Figure 3. Given a user u, a
state st = (u, qt) is sampled with the probability puabs(qt|zt)
conditioned on an abstract query zt ∈ Z . Then the agent
takes an action at ∈ A(st) according to it’s policy π and re-
ceives the immediate reward rt from the environment. Con-
ditioned on the query qt and action at, the next abstract query
zt+1 is sampled with the probability puabs(zt+1|qt, at).

The transition distribution of z is approximated via tran-
sition sub-task of our simulator, i.e., puabs(zt+1|qt, at) ≈
p̂abs(zt+1|u, qt, at; θs) = p̂abs(zt+1|st, at; θs). In terms of
the transition from zt to qt with the probability puabs(qt|zt),

we just sample a q as qt uniformly from the pre-built buffer
Du

zt (see Algorithm 1), where fq→z is a known surjective
function mapping from Q to Z . And this will lead to:

pabs(q|z) = 0 ∀q ∈ Q, z ∈ Z if fq→z(q) 6= z. (3)

Algorithm 1: Building real experience buffer with ab-
stract query.

input : fq→z(q),D =
{
(u, q, a, r, q′, trmt)i

}∣∣N
i=1

.
output: Dr , Du ,Du

z ,∀ z ∈ Z, ∀u ∈ U .

1 initialize Dr , Du, Du
z , ∀z ∈ Z, ∀u ∈ U as empty set;

2 for i← 1 to N do
3 get i-th transition (u, q, a, r, q′, trmt) from Dr and

s = (u, q), s′ = (u, q′);
4 z ← fq→z(q);
5 z′ ← fq→z(q

′);
6 append (s, z, a, r, s′, z′, trmt) to Dr , Du, Du

z

respectively;
7 end

4 RL-based Agent
In our scenario, an action at = (t1t , · · · , tKt ) ∈ A(st) is a
sequence of K tags (or sub-actions), and the number of can-
didate tags Tt is varying at different turns. This makes A(st)
a discrete dynamic combinatorial action space. Thus, the tra-
ditional architecture of DQN that takes the state as input and
outputs Q-values for each action at the output layer, is not
suitable for this problem. We consider another architecture
of Q-learning, named DRRN [He et al., 2016], which takes
the pair of state s and action a as input and outputs the Q-
value for this pair. The architecture of our agent is similar to
the shared layer of our environment simulator. The user u,
query q and action a are encoded as ha,u, ha,q and ha,a re-
spectively. Then ha,u, ha,q and ha,a are concatenated as ha.
ha is then fed into a two fully connected layers to calculate
the Q-value for the pair of the state and the action a.

Given a set of transitions D = {(s, a, r, s′, trmt)i}|Ni=1
(trmt indicates whether the state s is a terminal state or not),
the objective function is as follows:

La(θa) = Es,a,r,s′,trmt∼D

[(
y −Q(s, a; θa)

)2]
(4)

where:

y =

{
r + γ max

a′∈A(s′)
Q(s′, a′; θa

−
), if trmt is False.

r, otherwise
(5)

where Q(s, a; θa
−
) is the target network with parameter θa

−

from some previous iteration.
The rollout simulation between the simulator and agent is

described in Algorithm 2. Given a state s, the ε-greedy agent
takes an action a = maxa∈A(s)Q(s, a; θa) with probability
1− ε and takes an action a ∈ A(s) randomly with probability
ε. The training procedure of our agent and simulator is de-
scribed in Algorithm 3. The simulator is pre-trained to mini-
mize the total loss via supervised learning firstly (line 3) and



Algorithm 2: Rollout Simulation
input : Agent(s; θa), Simulator(s, a; θs), U , Ns, T ,

Ds, Du,Du
z , ∀ z ∈ Z, ∀ u ∈ U

output: Updated simulated experience buffer Ds

1 for i← 1 to Ns do
2 sample a user u from U ;
3 sample non-terminal transition (s, a, z, r, s′, z′, trmt)

from Du;
4 s1 ← s;
5 for t← 1 to T − 1 do
6 at ← Agent(st; θ

a); // ε-greedy
7 ct, trmtt, pabs(zt+1|st, at)←

Simulator(st, at; θ
s);

8 sample zt+1 with probability pabs(zt+1|st, at);
9 rt ← getReward(ct); // rule-based

10 sample s uniformly as st+1 from Du
zt+1

;
11 append (st, at, rt, st+1, trmtt) to Ds;
12 if trmtt is ture then break;
13 end
14 end

Figure 4: The distribution of transitions over different user groups.

then minimize the losses of three sub-tasks respectively (line
4). At each step, the agent is first trained with real experience
replay (line 8). Then, the agent interacts with the simulator
(line 9) and simulated experience replay is performed on the
simulated experiences buffer (line 11).

5 Experiments
5.1 Dataset and Abstract Query
Dataset Our dataset is derived from the log of Taobao
APP 2, which is processed into transition tuple, i.e.,
(s, a, r, s′, trmt). The user feature u ∈ R9 is the concatena-
tion of three one-hot vectors, namely, age (3 categories), gen-
der (3 categories including null value) and purchase power (3
categories). And the data distribution is shown in Figure 4.
For a transition, if a user clicked on one of the recommended
tags, the reward r = 1, otherwise r = 0. We have 17, 979
transitions with r = 1. However, in terms of transitions with
r = 0, we cannot say that the action a derived from the log
is bad because it is very likely that no click was made by the
user in real world even the action is optimal. In order to re-
duce the noisy, only 17, 980 transitions with r = 0 sampled
randomly are used.

2The largest E-commerce platform in China.

Algorithm 3: Training Algorithm
input : D, fs→z(s), T,N

s, C,m
output: Agent(s; θa)

1 build Dr , Du, Du
z , ∀ z ∈ Z,∀u ∈ U with Algorithm 1;

2 initialize Agent(s; θa), Agent(s; θa
−
),

Simulator(s, a; θs) randomly;
3 pre-train the Simulator(s, a; θs) with Dr via supervised

learning to minimize Eq. 1;
4 pre-train the Simulator(s, a; θs) with Dr via supervised

learning to minimize Ls
click(θ

s), Ls
trmt(θ

s) and
Ls

trt(θ
s) respectively; // parameters in

shared layers keep fixed
5 initialize the simulated experience buffer Ds (fixed length)

via Algorithm 2;
6 for i← 1 to∞ do
7 get m minibatches from Dr;
8 update θa with m minibatches to minimize Eq. 4;
9 rollout simulation and update Ds with Algorithm 2;

10 sample m minibatches from Ds;
11 update θa with m minibatches to minimize Eq. 4;

12 reset θa
−
= θa every C steps;

13 if θa are converged then break;
14 end

Training Testing Validation

Click 1 10,788 3,595 3,596
0 10,788 3,596 3,596

Terminate 1 5,394 1,798 1,798
0 16,182 5,393 5,394

Ave. # of tags 5.93 5.97 5.98
Ave. length of tags 2.56 2.56 2.56

Ave. length of query 5.55 5.20 5.22

Table 1: Description of our dataset, of which 60% for training, 20%
for testing, 20% for validation.

Abstract Query As for abstract query Z , we first repre-
sent q as the average vector of words in q, then K-means is
performed on these average vectors to assigns a cluster id for
each q (20 clusters). Considering the null value of query q,
we have |Z| = 20 + 1 = 21. Thus, the mapping function
fq→z(q) is getting the cluster id of query q.

5.2 Implementation Details
The simulator is pre-trained before interacting with our agent
and fixed unchanged while interacting with the agent. Each
word is represented by word embedding (200-dim) trained
on the historical queries from other scenarios of Taobao APP
(∼12.7 million queries, 332,922 words) via word2vec. ε =
0.2, γ = 0.9,m = 5, Ns = 5, T = 20, learning rate is set to
10−5 and 10−3 for the training of environment simulator and
agent respectively. At each turn, the agent recommends 3 tags
to the user (i.e., K = 3). The target network of the agent is
updated every 200 steps. The hidden size (both bidirectional
LSTM and fully connected layers) of simulator and agent is
5 and 10. The length of simulated experiences buffer Ds is
1000.



5.3 Experiment Setup
We evaluate our agent for both offline and simulated online
setting and compare it with different training modes.

Evaluation Metrics
For offline evaluation, we treat the tag clicked by real user
as the positive one. We borrow metrics from information re-
trieval, including Mean Average Precision at n (MAP@n),
Normalized Discounted Cumulative Gain at n (NDCG@n)
and Recall at n (Recall@n)3. Assuming that the number
of the clicked tag is 1, we have MAP@1 = NDCG@1 =
Recall@1 and only Recall is reported at position 1. It’s wor-
thy noting that only transitions with a clicked tag is used for
offline evaluation.

For simulated online evaluation, we let agents trained to
interact with our simulator. The metrics used include aver-
age cumulative reward per session and the average number
of turns per session. In the scenario of online shopping, it is
better that users spend more time on the platform, so a larger
average turn is preferred.

Baselines
We compare our model with some baselines: (1) Random.
Given a state s, the random agent always takes an action
a ∈ A(s) randomly. (2) DQN. The agent is trained with
real experiences replay without interacting with the simula-
tor (Algorithm 3 without lines 9-11). (3) DQN-Sim. The
agent is trained via interacting with the simulator only (Al-
gorithm 3 without lines 7-5). (4) DQN-Both. The agent is
trained with both real experiences replay and the simulator
(Algorithm 3). At each training step, DQN-Both is updated
with 2m (m batches of real experiences and m batches of
simulated experiences) batches while both DQN and DQN-
Sim are updated with m batches, i.e., real and simulated ex-
periences respectively.

5.4 Experimental Results
In this section, we first compare our DQN agent with Random
agent to evaluate the performance of our RL-based agents.
Then, we compare the DQN agent with both DQN-Sim agent
and DQN-Both agent to show that the training of the agent is
converged faster and its performance is better with the assis-
tance of the simulator.

Step Agent Reward Turn

4K
DQN 4.147 ±0.582 9.358 ±1.072

DQN-Sim 5.721 ±0.547 12.284 ±1.011
DQN-Both 6.398 ±0.183 13.510 ±0.347

10K
DQN 6.266 ±0.166 13.287 ±0.288

DQN-Sim 6.432 ±0.088 13.640 ±0.152
DQN-Both 6.395 ±0.117 13.544 ±0.238

Table 2: The performance of different agents at training step = {4K,
10K}) on 1K simulated sessions. The transition buffer Du,Du

z for
rollout simulation are built from testing set.

3Considering that there exists only one positive tag for one query
(i.e., one transition), we use Recall@n rather than Precision at n
(Recall@n=n×P@n in this work).

Figure 5: Learning curve of different agents on Recall. The 4, ×
and ◦marked lines are the metrics at position 1, 2 and 3 respectively.
The performance of different agents are evaluated on validation set
(only transitions with click = 1) during the training of agents. The
NDCG and MAP curve have similar trends with Recall curve due to
the high relevance.

Figure 5 shows the Recall of different agents at position 1,
2 and 3. We can see that all the RL-based agents outperform
the random agent greatly on all metrics, which demonstrates
the performance of our RL-based agents.

Table 2 shows the simulated online performance of dif-
ferent agents at training step = {4K, 10K}. As we can see,
the two simulator-involved agents outperform the DQN agent
in terms of both reward gained and number of turns lasted
(the higher the better). At training step = 4K, the DQN-Both
outperforms the two other agents. However, at training step
= 10K, DQN-Sim agent reaches the best performance. The
reason is that our environment simulator cannot mimic the
behavior of real environment perfectly, which results in a dy-
namic environment for DQN-Both agent when replaying both
real experiences and simulated experiences, making it diffi-
cult for DQN-Both agent to learn a optimal policy for both
the real environment and simulated environment.

Table 3 shows the offline performance of different agents
at training step = {2K, 4K, 10K}. At training step = 2K,
4K, both DQN-Sim agent and DQN-Both agent outperform
DQN agent in a large margin. As the training continues, the
gap between the DQN agent and the two simulator-involved
agents is decreasing. The DQN-Sim agent, accessing the real
data indirectly through our simulator, achieves comparable
performance to DQN agent which indicates the effectiveness
of our simulator.

More importantly, the DQN-Sim agent converges much
faster than DQN agent during the training. We attribute this
to the trade-off between exploration and exploitation. In other
words, the real experiences buffer collected in advance is
fixed during the training of the agents. Thus, the DQN agent
is trained with a fixed buffer and there is no exploration of
action space and state space. While the DQN-Both agent and
DQN-Sim agent are trained via interacting with the simulator,
during which they can have a better exploration.

We perform an experiment to reveal how the exploration
can be enforced with the assistance of our simulator. We
present the percentage of action space explored by the agent
in terms of number of rollouts. When the number of rollouts
equals to 1, it is the same as DQN with fixed real experiences.
As shown in Table 4, we can see that only 3.9% of actions



Step Agent Recall@1 Recall@2 Recall@3 NDCG@2 NDCG@3 MAP@2 MAP@3

2K
DQN .1445 ±.0213 .3328 ±.0270 .5305 ±.0282 .2633 ±.0234 .3622 ±.0239 .2387 ±.0225 .3046 ±.0228

DQN-Sim .1877 ±.0176 .3947 ±.0179 .5880 ±.0238 .3183 ±.0177 .4149 ±.0198 .2912 ±.0176 .3556 ±.0188
DQN-Both .2279 ±.0194 .4472 ±.0280 .6552 ±.0171 .3663 ±.0244 .4703 ±.0186 .3375 ±.0232 .4069 ±.0193

4K
DQN .1864 ±.0204 .3949 ±.0199 .6113 ±.0251 .3179 ±.0200 .4261 ±.0226 .2906 ±.0200 .3628 ±.0218

DQN-Sim .2233 ±.0076 .4305 ±.0068 .6471 ±.0067 .3540 ±.0062 .4623 ±.0059 .3269 ±.0063 .3991 ±.0060
DQN-Both .2235 ±.0101 .4414 ±.0131 .6573 ±.0081 .3610 ±.0111 .4689 ±.0085 .3325 ±.0106 .4044 ±.0089

10K
DQN .2233 ±.0086 4̇451 ±.0095 .6773 ±.0056 .3632 ±.0089 .4793 ±.0051 .3342 ±.0088 .4116 ±.0060

DQN-Sim .2318 ±.0132 .4498 ±.0163 .6767 ±.0072 .3693 ±.0145 .4828 ±.0101 .3408 ±.0140 .4164 ±.0112
DQN-Both .2369 ±.0085 .4536 ±.0060 .6843 ±.0058 .3736 ±.0060 .4890 ±.0053 .3452 ±.0063 .4222 ±.0057

Table 3: The performance of different agents at training step = {2K, 4K, 10K} on testing set (only transitions with click = 1). The difference
of Recall@1 between DQN and DQN-Sim/DQN-Both evaluated at the same training step is statistically significant (The one-tailed p < 0.1).

# of rollouts 1 20 50 100

Percentage 3.9% 9.4% 16.6% 25.7%

Table 4: Percentage of action space explored by the agent in terms
of # of rollouts. # of rollouts is the repeated times the agent takes
an action with ε-greedy strategy for each turn-level transition. And
the percentage is the average percentage of the number of different
actions taken by the agent.

can be visited without experiences generated by the simula-
tor. While the percentage of visited actions increases greatly
when the simulator generated experiences are involved. The
number increases with the number of rollouts.

Performance of Environment Simulator The perfor-
mance of our simulator on three sub-tasks are reported in Ta-
ble 5. We use three metrics including recall, precision and F1
score.

Sub-task Precision Recall F1-Score

Click 0.6853 0.6741 0.6693
Terminate 0.7170 0.6130 0.6386
Transition 0.3377 0.2742 0.2648

Table 5: The performance of our simulator on three tasks.

6 Related Work
RL-based algorithms have been applied to different scenarios
of recommendation. [Zhao et al., 2018] applies actor-critic al-
gorithm to solve items recommendation involving the 2-D or-
der between items in one page. [Zheng et al., 2018] integrates
user behavior and profile information into state representation
for online news recommendation with RL-based agent. [Choi
et al., 2018] introduces an RL-based framework for recom-
mendation where states are represented as grid-world ob-
tained from bi-clustering to reduce the state space and action
space. [Chen et al., 2018] employed stratified sampling and
regret approximation to stabilize the learning of agent for rec-
ommendation.

To our knowledge, the agenda-based simulator [Schatz-
mann et al., 2007] is the first simulator for RL-based tasks,
and have been widely applied in dialogue system [Wei et al.,

2018; Li et al., 2017; Peng et al., 2017]. It is rule-based,
where the handcrafted action space of environment simulator
should be pre-defined and cannot be generalized to complex
tasks (e.g., online shopping). From the perspectives of simu-
lator and agent, the interacting process can both be treated as
a sequential decision problem respectively. Thus, a simula-
tor could be learned via inverse reinforcement learning based
on experts’ (users’) demonstrations [Chandramohan et al.,
2011]. What’s more, the sequence-to-sequence architecture
could also be employed to model the user simulator [Asri et
al., 2016]. [Peng et al., 2018] propose a multi-task user simu-
lator to interact with the agent. Instead of transiting into next
state directly, it selects one of the pre-defined user actions and
an additional state tracker is needed to update the state.

How to train the agent with collected data efficiently has
attracted a lot of research. [Lu et al., 2018] introduce two
approaches for data augmentation in task-completion tasks so
that the agent could be trained more efficiently. Considering
the model-based RL algorithms could learn a better policy
from less data, state abstraction have been used to reduce the
complexity of model-based RL methods [Serban et al., 2018;
Jiang et al., 2015].

7 Conclusion and Future Work

In this work, we introduce a multi-task model-based environ-
ment simulator for online shopping platform to train the RL-
based agent via interactions. Experimental results on real-
world dataset demonstrate that the agent can converge faster
with the assistance of the simulator. Further analysis shows
that agent is able to explore larger action space with experi-
ences generated by the simulator. In future, we will explore to
improve the performance of the simulator to provide a better
simulation of the environment.
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