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Abstract

Interactive argument pair identification is es-
sential in the context of dialogical argumenta-
tion mining. Existing research treats it as a
problem of sentence matching and largely re-
lies on textual information to compute the sim-
ilarities. However, the interaction of opinions
usually involves the background of the topic
and requires reasoning of knowledge, which
is beyond textual information. In this paper,
we propose to leverage external knowledge to
enhance the identification of interactive argu-
ment pairs. We construct the argumentation
knowledge graph from the discussion thread
of the target topic in the online forum. The
interaction between the original argument and
the reply is then represented as the path of
concepts in the knowledge graph. In prac-
tice, we utilize Graph Convolutional Network
(GCN) to learn the concept representation in
the knowledge graph and use a Transformer-
based encoder to learn the representation of
paths. Finally, an information alignment net-
work is employed to capture the interaction
of textual information of conceptual informa-
tion (both entity-level and path-level). Exper-
iment results indicate that our model achieves
state-of-the-art performance in the benchmark
dataset. Further analysis demonstrates the ef-
fectiveness of our model for enforcing knowl-
edge reasoning through paths in the knowl-
edge graph.

1 Introduction

Argumentation Mining aims at analyzing the se-
mantic and logical structure of argumentative texts.
Existing research covers argument structure predic-
tion (Morio et al., 2020; Li et al., 2020), persua-
siveness evaluation (Al Khatib et al., 2020; El Baff
et al., 2020) and argument summarization (Bar-
Haim et al., 2020b,a). Most of them focus on mono-
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Figure 1: Two instances of interactive argument pairs,
the related concepts are colored same, and the corre-
sponding knowledge is visualised in the right side.

logical context like student essays, public speeches,
etc., where only one participant is involved.

Online forums such as idebate1 and change-
myview2, enable people to exchange opinions on
some specific topics freely. The user generated
dataset of interactive arguments also motivates an-
other line of research for argumentation in dialog-
ical context (Asterhan and Schwarz, 2007). Ini-
tial researches in this filed focused on analyzing
the ChangeMyView data (Tan et al., 2016; Wei
et al., 2016) to summarize the key factors of per-
suasive arguments. Furthermore, Ji et al. (2019)
and Cheng et al. (2020) propose the task of identi-
fying and extracting interactive arguments. Ji et al.
(2019) formulate this task as a problem of sentence
pair scoring and computes the textual similarity

1https://idebate.org/
2https://www.reddit.com/r/

changemyview/

https://idebate.org/
https://www.reddit.com/r/changemyview/
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between the two arguments as the result. Such task
is then further applied to other fields such as legal
domain. For instance, Yuan et al. (2021) organize
a challenge aimed to identify the interactive argu-
ments from the plaintiff and the defense in a legal
case. However, the interaction of argumentation is
beyond text matching.

Two sample pairs of interactive arguments are
shown in Figure 1. Both pairs of arguments share
a limited number of overlapping tokens and fail
existing models. We have two observations. Firstly,
background knowledge needs to be involved. In
the first sample, we need to know that ”Obama”
is the ”president”, and both ”John Boehner” and
”Nancy Pallosey” are the ”speaker of the house”
to understand the context. Secondly, knowledge
reasoning is necessary. In the second sample, the
relationship between ”global warming” and ”sea
level” is implied by a series of causal effects. Fur-
thermore, as is shown in the example, an effective
way of leveraging commonsense and causal effect
knowledge is to find the reasoning paths between
the concept entity pairs. Therefore, we argue that
retrieving and understanding the reasoning paths
should be incorporated for the identification of in-
teractive arguments.

In this paper, we propose to leverage external
knowledge to enhance the automatic identification
of interactive arguments via background knowl-
edge modeling and reasoning. We start with con-
structing an argumentation knowledge graph fol-
lowing (Khatib et al., 2020) based on the context of
the discussion. Then, we extract entities of each ar-
gument and link them with the external knowledge
graph to obtain the concept embedding as back-
ground knowledge. Besides, we generate paths
connecting each pair of entities and encode them
via a transformer encoder to enforce the reason-
ing. Finally, we integrate the entity embeddings,
path representations, and textual embedding via an
information alignment network to learn the final
representation of the argument pair and output a
real value as the matching score. We evaluate our
proposed model on a publicly available dataset and
experimental results show its effectiveness com-
pared to some state-of-the-art approaches. Further
analysis of the path encoding module reveals that
our model is able to perform knowledge reasoning
to some extent.

Statistics w/o. grounding w. grounding

# of nodes 291,199 291,199
# of edges 785,036 859,534

avg. degree 2.696 2.952
# of connected components 13,805 10,035

Table 1: Basic statistics on the argumentation graph
without and with concept grounding.

2 Argumentation Knowledge Graph
Construction

Data Source The experimental dataset (Ji et al.,
2019) in our research is constructed on top of the
CMV dataset (Tan et al., 2016). In order to pro-
vide external knowledge for the identification of
interactive arguments, we construct an argumenta-
tion knowledge graph based on the CMV dataset.
ChangeMyView (CMV) is an online forum where
users can either submit a post to elaborate their
own viewpoints and invite other users to convince
them of the opposite opinion or reply to others’
posts to change the poster’s original view. Tan
et al. (2016) crawled 20,626 discussion threads
with more than two posts from January 2013 to
September 2015. We first extract all the concept-
relation-concept triples (ehi , ri, e

t
i) in the ith entry

of the data source using Open Information Extrac-
tion (OpenIE). Our raw graph is thus G = (V,E),
where V = {ehi }ni=1 ∪ {eti}ni=1 and E = {ri}ni=1.
The raw knowledge graph contains 291,199 nodes
and 785,036 edges.

Concept Grounding In order to further improve
the quality of the knowledge graph, we conduct
concept grounding to align all the nodes that share
common conceptual meanings. Specifically, we
use WordNet and Wikipedia API TagMe (Ferragina
and Scaiella, 2010) in this process. If two concepts
ei, ej are synonyms or refer to the same entry on
Wikipedia, we add a new edge requal to the graph’s
edge setE. After concept grounding, the size of the
edge set E expands to 859,534 with the size of the
node-set V remained fixed. Some basic statistics
of the knowledge graph are as shown in Table 1.
It indicates that concept grounding increases the
number of edges in a large margin and alleviates
the problem of the sparsity of the original graph.

3 Proposed Model

Given an original argument q and its context cq,
and five candidate replies {ri}5i=1 with their cor-
responding contexts {ci}5i=1, the model needs to



Figure 2: Illustration of the detailed architecture of our model to generate the matching feature vector, which
mainly consists of three modules, a Sentence Encoder, a Concept Encoder and an Information Alignment Network.
The output of these modules is then fed to a 2-layer perceptron to achieve the final matching score for the given
argument pair.

identify the correct reply for q. We score each can-
didate pair independently and choose the reply with
the highest score as the output. Moreover, in order
to enable our model to conduct a reasoning process,
we extract all the concept entities mentioned in
the contexts from both sides, and also the concept
paths that connect them. For simplicity, we will use
sentence pairs to refer to the quotation and reply
arguments and use concept pairs to refer to both
the entities and paths in the following sections.

The full architecture of our scoring model is
shown in Figure 2. It takes a sentence pair, and
the concept pair extracted from its corresponding
contexts as inputs and outputs a real value as its
matching score. Our model mainly consists of three
components, namely, sentence encoding, concept
encoding, and information alignment network. We
use a pre-trained language model, BERT, to learn
the argument pair representation (§3.1), and encode
the concept information from two levels, both en-
tity level and path level with graph networks (§3.2).
The information alignment network then integrates
the sentence pair encoding and the concept encod-
ing through a hierarchical attention mechanism to
obtain the full matching features (§3.3), which are
finally fed into a multi-layer perceptron (MLP) to
calculate the final matching score (§3.4).

3.1 Sentence Encoding

As for the quotation and reply arguments, it is crit-
ical to use the semantic information implied in
the texts. Various works have already proved the
outstanding performance of pre-trained models in
semantic modeling. In our work, we use the BERT
model to generate the encoding s for the given argu-
ment pair by simply creating a sentence that takes
the form of ”[CLS] q [SEP] r [SEP]” and taking the
embedding for the ”[CLS]” token, just as suggested
by previous works (Talmor et al., 2019).

3.2 Concept Encoding

For entities in the argumentation knowledge graph,
we need to obtain the representation for each node.
We use the BERT model with average pooling
to get the initial representation for each entity.
Then we encode the conceptual information in both
entity-level and path-level with graph networks to
enforce the background knowledge modeling and
reasoning.

3.2.1 Entity Level Representation

To utilize the structural information entailed in the
knowledge graph, we apply a 2-layer Graph Convo-
lutional Network (GCN) to it. Here we adopt GCN
as it has proved to be both effective and efficient in
merging the node’s neighbours’ information into
itself (Zhang et al., 2018).



Formally, let X ∈ Rn×d representing the em-
bedding matrix for all n nodes, where each node’s
embedding is of size d. Denote D ∈ Rn×n as the
diagonal degree matrix and A ∈ Rn×n as the adja-
cency matrix of the graph G. Then the normalized
symmetric adjacency matrix of the graph G can be
calculated as:

Ã = D− 1
2AD− 1

2 (1)

By feeding the graph G into the 2-layer GCN,
the final graph representation L ∈ Rn×d can be
calculated as:

L = σ(Ãσ(ÃXW0)W1), (2)

where σ stands for the non-linear function (RELU),
and W0,W1 ∈ Rd×n are trainable parameters of
the network.

3.2.2 Path Level Representation
To further utilize the external knowledge, we want
to encode the concept path retrieved from the
knowledge graph, where a path starts from a con-
cept eq mentioned in the original post(i.e. quota-
tion) q, traverses through the neighbored concepts,
and finally ends at a concept er extracted from
the reply r. For each concept pair, we choose the
shortest path (if exists) between them as the path
connecting them.

We use the GCN output as the representation
for each node that appears in the path, hence we
can denote the path between the i-th concept in
q (cqi ) and the j-th concept (crj ) in r as Pij =

(cqi , c1, ...cmij−1, c
r
j) ∈ Rmij×d, where mij is the

the length of the path Pij .
Transformer (Vaswani et al., 2017) has been

shown powerful due to its self-attention mecha-
nism, thus, we choose it to encode the path we
collected from the knowledge graph. To underline
the influence of the sequence in each path, we add
the path’s embedding with positional embedding
PE. To sum up, our path encoder generates the
representation for each Pathij as:

pij = Transformer Encoder(Pij + PE). (3)

The output is finally fed to a fully-connected layer
to fit into the size of d.

3.3 Information Alignment Network
We then align the semantic information and the con-
ceptual information through a hierarchical attention
mechanism, i.e. a text-guided attention network for
paths and a path-guided attention network for enti-
ties.

3.3.1 Text-guided Attention over Paths
Note that for the given argument pair and their con-
texts, we already have all the paths’ encoding from
previous modules. We first use attention between
the k-th paths pk and semantic vector s to integrate
the encoding for all the paths g:

αk = sW2pk, (4)

α̂ = SoftMax(α), (5)

g =
∑
k

α̂kpk, (6)

where W2 is a parameter matrix to be learned, α
and α̂ stands for the unnormalized and normalized
attention weights.

3.3.2 Path-guided Attention over Concepts
Obtaining the full paths’ representation g, we can
further aggregate all the concepts’ encoding {ei}
of both sides using attention between them and g
to generate the final representation of concepts cq

and cr:

βsi = gW s
3 e

s
i , (7)

β̂s = SoftMax(βs), (8)

cs =
∑
i

β̂ie
s
i , (9)

where the subscript s ∈ {q, r} indicates whether
the concepts are from quotation or reply, W q

3 and
W r

3 are parameters matrix to be learned, while β̂q

and β̂r stand for the attention weights.

3.4 Matching Scoring
Eventually, we concatenate the textual information
s, the reasoning paths information g and the con-
cepts information cq, cr as the final feature and feed
it to 2-layer perceptron to generate the matching
score S of the given argument pair:

f = [s; g; cq; cr], (10)

S = σ(WSf + bS), (11)

where σ refers to the the rectified linear activation
function (ReLU), WS and bS represent the weight
vector and the bias respectively.

After obtaining the matching score for each ar-
gument pair, we treat the task as a sentence pair
ranking problem, and use MarginRankingLoss for
training:

L =

4∑
i=1

max(0, γ −S(q, r+) +S(q, r−i )), (12)



where S(q, r+) refers to the matching score of the
positive argument pair while S(q, r−i ) refers to the
matching score of the i-th negative argument pair,
and γ is the margin hyperparameter.

4 Experiments

In this section, we will introduce the dataset, the
evaluation metrics, comparative models and exper-
iment results.

4.1 Experiment Setup

Experimental Dataset We use the dataset con-
structed in (Ji et al., 2019) for evaluation. The
authors find that in the ChangeMyView dataset
(Tan et al., 2016), there exist replies that quote sen-
tences from the original post. They extract all these
quotation-reply pair q, r from posts in Change-
MyView dataset (Tan et al., 2016). For every in-
teractive argument pair, they randomly sample four
negative replies {rnegi }4i=1 along with their con-
texts {cnegi }4i=1 from the same discussion thread.
It contains 11,565 and 1,481 instances in training
set and test set respectively. Furthermore, we ran-
domly split 10% of the training set as validation
set.

Implementation Details The output dimensions
for the two layers in GCN are 256 and 128 re-
spectively, the path transformer encoder we use is
stacked by 6 encoder layers. The margin γ used in
MarginRankingLoss is set to 0.5. Dropout is used
as 0.1 to avoid overfitting. We use Adam as our
optimizer with a learning rate set to 5× 10−6 and
weight decay set to 5×10−6. We run our model for
100 epochs with early stop (Caruana et al., 2000).

Models for comparison We compare the perfor-
mance of some state-of-the-art models.

- BiGRU: This method uses a Bidirectional GRU
to encode the quotation and the reply argument
separately and integrates their representations
into a multilayer perceptron (MLP) to get the
matching score.

- VAE : This method uses variational auto encoder
through an encoder-decoder based architecture
to get the encoding of the arguments and utilizes
MLP for scoring.

- DVAE (Rolfe, 2017): This method substitutes
the above VAE module with a discrete variational
auto encoder and adopts the former framework.

- BERT (Devlin et al., 2019): This method fine-
tunes the pre-trained BERT model for sentence-
pair classification. Note that this model is not
only a baseline model but also a sub-module of
our proposed model.

Note that the above models only utilize the sen-
tences of q and r, we also extend these models to
incorporate context information.

- RNN Context: This method uses another Bi-
GRU module to encode the context information
of each argument and concatenate it with the ar-
gument representation to get the final features.

- Hierarchical Context (Ji et al., 2019): This
method uses a token-level CNN with an attention
mechanism to achieve the sentence-level infor-
mation and then integrates such sentence repre-
sentation with a BiGRU layer to obtain the final
context encoding.

4.2 Overall Performance
We report both precision at one(P@1) and mean
reciprocal rank (MRR) for evaluation. The perfor-
mance of all the baseline models and our proposed
model is as listed in Table 2. We have the following
findings.

- Among all the context-agnostic baseline mod-
els, the BERT model achieves the highest per-
formance, and it even defeats all other models
that utilize the context information, indicating
that such pre-trained language model does better
encode the semantic information entailed in the
texts.

- Incorporating context information is crucial for
identifying interactive argument pairs, as is
proved by the fact that all the context-aware
models significantly outperform their counterpart
baseline models.

- In comparison with all the context encoding
methods, hierarchical context modeling outper-
forms the RNN method. Our method outperforms
the hierarchical method, which proves the effec-
tiveness of our model.

4.3 Ablation Study
The results of the ablation study are shown in the
Table 3. We can find that the Path Transformer
contributes greatly to the whole framework since



P@1(%) MRR(%)
Methods Dev Set Test Set Dev Set Test Set
Random Guess 20 20 45.67 45.67
BiGRU 65.92 51.52 75.22 70.57
BiGRU+RNN Context 69.29 55.98 80.51 73.20
BiGRU+Hierarchical Context 70.93 57.46 82.47 73.72
VAE+Hierarchical Context 71.28 58.61 83.82 74.66
DVAE+Hierarchical Context∗ 73.70 61.17 85.14 76.16
BERT 73.18 61.85 84.69 76.57
BERT+Hierarchical Context 76.81 66.85 86.38 78.51
Ours 78.33 68.75 87.43 80.85

Table 2: Performance comparison for all the models on the development dataset and the test dataset, where the
sign ’*’ represents the former state-of-the-art model. The best result on the test set is in bold

Model P@1 MRR
Sentence + Concept + Align 68.75 80.85
: BiGRU as Path Encoder 67.12 79.46
: w/o Alignment Layer 65.48 79.39
: w/o Path Transformer 64.41 77.41
: w/o Concept Encoder 61.85 76.57
: w/o Sentence Encoder 51.96 68.83

Table 3: Ablation study on our proposed framework.

the model’s performance drops by over 4% in P@1.
This shows that besides the textual features and
the concepts that directly appear in the argument,
the concepts that emerge in the reasoning path are
also important when considering whether two argu-
ments have interactive relations.

5 Further Analyses

We conduct some further analyses to have a deeper
understanding of the working mechanism of con-
cept paths. Besides, we present an error analysis
and a case study.

5.1 Analysis on Reasoning Path
Without ambiguity, we use positive paths and nega-
tive paths to refer to the paths that connecting the
concepts in positive argument pair samples and the
ones in the negative samples.

Connectivity between concept pairs First, we
calculate the connectivity between each concept
pair, and the results are as shown in Figure 3(a). In
all the concept pairs of the two sides, the ones from
a positive argument pair have a probability of 54%
to form a reasoning path while the ones from a neg-
ative sample only have 41%, which conforms with

the fact that an interactive argument pair mainly
talk about the same topic or subject.

Path length distribution We present the distri-
bution of the length of concept paths in Figure 3(b).
The vast majority of the path lengths lie in the
range from 3 to 4, while the lengths of the positive
paths are generally shorter than those of the nega-
tive paths. We owe such a difference in the average
length to the fact that, in positive argument pairs,
the replies tend to directly use the concepts men-
tioned in the quotation (the reasoning path between
such concept pair is hence 1). Another interpreta-
tion for the shorter average length in positive pairs
is that the longer the reasoning path is, the more
likely it is to become an off-topic or off-subject
reply.

Path relations We further analyze the types of
concept paths generated by investigating the rela-
tions appearing in the path. As discussed in the
Introduction(§1), there are mainly two types of ex-
ternal knowledge needed to handle the interactive
argument pair identification task, namely the com-
monsense knowledge and the causal effect knowl-
edge. Hence, we would like to see how much pro-
portion of these two types of knowledge occurs
in the reasoning paths respectively. For common
sense knowledge, we pick out the relations that con-
tain the be verbs and their variants, assuming such
words indicate the relation of equivalence. And as
for the causal effect relations, we use a set of lexical
indicators from +/-EffectWordNet (Choi and Wiebe,
2014), ConnotationWordNet (Kang et al., 2014)
and Connotation Frames (Rashkin et al., 2016).
These lexicons all evaluate the causal effect of a
given predicate. The distribution of relations under



(a) The existence of reasoning paths between every concept pair
in the contexts of the quotation and the reply.

(b) The distribution of path length in the positive argument
pair samples and in the negative samples.

(c) The distribution of path relations in all the reasoning paths. (d) The impact of different paths filtered by the path length
on P@1.

Figure 3: The results of our further analysis on the reasoning paths.

such criterion is as shown in the Figure 3(c), from
which we can find that near 40% of the relations
belong to the common sense knowledge while 44%
of the relations are of causal effect relations (31%
for the positive effect and 13% for the negative
effect).

Impact of path length on model performance
We show the influence of the length of the path on
the performance of the model in Figure 3(d). We
set a threshold on the length of the path to filter
concept paths used in the model. From the results,
we can find that our model’s performance improves
significantly when the threshold is set from 3 to
4, in which most path lengths are distributed. The
performance decreases when the path length is set
to 5 and 6, which means it includes some noise and
hurts the performance.

5.2 Error Analysis

For the instances that our model fails to predict the
interactivity, we find that the problems are mainly

two-fold:

- Concept level: For some of the failed cases, we
find that around 37% of them contain at least one
reply from which no concepts can be extracted,
which blocks our path-finding based reasoning
process. It is also the reason why our model’s
performance in the ablation study is lowest when
removing the semantic information (i.e. BERT
encoding).

- Semantic level: Some other failed cases share
the common features that the reply does not refer
to the specific term mentioned in the quotation,
but gives out a more general rebuttal, e.g. [quo-
tation] If the president is either killed or resigns,
the vice president is a horrible choice to take over
the office. [reply] Seriously, stop this hyperbole.
Our model cannot effectively distinguish the in-
teractivity between them, as the reply is short and
has entirely no overlapping with the quotation.



Figure 4: Case study of an instance from the test set. Our model successfully chooses the correct reply argument
from the given candidates while the BERT model gives the wrong answer. Note that the concepts and the paths are
all sorted from top to bottom in terms of hierarchical attention weights.

5.3 Case study

A case study is as shown in Figure 4, where the
negative reply is selected by BERT baseline. It
shows that although the quotation and the negative
reply share a common concept, quality of life, our
model successfully figures out the interactive reply
argument through the reasoning paths between the
concepts from the two sides. All the concepts and
the paths in the figure are arranged from top to bot-
tom according to their respective attention weights.
We can find that upper paths are actually highly
related to the reasoning process of humans, and
the irrelevant concepts such as worker productiv-
ity will automatically diminish by our hierarchical
attention alignment.

6 Related Work

Dialogical argumentation mining As men-
tioned in Introduction(§1), our work mainly focus
on dialogical argumentation mining. Among re-
cent researches in this aspect, El Baff et al. (2020)
compare content- and style-oriented classifiers on
editorials to explore the effect of the writing style
of editorials to the audience of different parties; Ji
et al. (2019) propose the task of identifying inter-
active argument pairs in online debate forum such
as ChangeMyView (CMV). Cheng et al. (2020)
collects the text data from peer review and rebut-
tal process to mine the argumentative relationship
entailed in such discussion; Khatib et al. (2020)
constructs a monological argumentation graph by

extracting knowledge from Debatepedia.org and
use human annotation to further improve the qual-
ity of their knowledge graph. Our work obtains
inspiration from the construction of Al-Khatib’s
knowledge graph, but adapting their method to the
dialogical debating forum settings, and removing
the human annotation stage to obtain an automati-
cally generated knowledge graph.

Leveraging external knowledge in NLU Our
work also lies in the general context of using ex-
ternal knowledge to encode sentences and para-
graphs. Yang and Mitchell (2017) are among the
first researches that retrieve the related entities in
the external knowledge base and merge them into
an LSTM encoder. Afterward, Weissenborn et al.
(2017), Mihaylov and Frank (2018) and Zhang et al.
(2020) mainly follows the main idea of the work
to incorporate external word-level lexical knowl-
edge to enhance the sentence embedding. More-
over, Lin et al. (2019) propose a knowledge-aware
network(KagNet) that utilizes that graph knowl-
edge from ConceptNet to answer the commonsense
questions. Compared with these methods, our work
utilizes conceptual information from dialogical ar-
gumentation lexicons and conducts a reasoning pro-
cess resembling human beings, which is then en-
coded by a path transformer, and finally aligned
with the semantic information through a hierarchi-
cal attention mechanism.



7 Conclusion and Future Work

We propose a framework that imitates human’s rea-
soning process in debating. Practically, we first
construct a dialogical argumentation knowledge
graph from the online debating forum Change-
MyView, by using an automatic OpenIE toolkit
and conducting concept grounding with lexical re-
sources and Wikipedia API. Then we use a path-
based graph model to encode the concepts and the
reasoning path between concepts from two sides of
a debate and align the conceptual information with
the semantic information obtained implicitly by
pre-trained language model BERT. Experiments on
interactive argument pair identification task show
that our model can leverage the external knowledge
in both effective and transparent way.
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